Abstract
A numerical-analytical method for non-stationary queueing systems models computation is presented. The solution of Chapman—Kolmogorov equations is found in the analytical form. The algorithm and its practical implementation with Java language are discussed. Computation time and results precision for the presented method and the Runge—Kutta type method used in Matlab are compared.
Highlights
Для дополнительной проверки точности на Java был реализован«классический» метод Рунге — Кутты четвертого порядка с постоянным шагом
Such models describe the processes of customers servicing in the specified time interval under general assumptions
Kolmogorov equations solution becomes important in this case
Summary
«классический» метод Рунге — Кутты четвертого порядка с постоянным шагом. В таблице 2 приведены значения вероятности поглощающего состояния с номером 5150 при = 50, 100, 150. Интенсивность поступления заявок = 1, интенсивность обработки = 2, = 100. Шаг по времени в методе Рунге — Кутты обозначен h
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.