Abstract

Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) stress-only protocols reduce radiation exposure and cost but require clinicians to make immediate decisions regarding rest scan cancellation. We developed a machine learning (ML) approach for automatic rest scan cancellation and evaluated its prognostic safety. In total, 20 414 patients from a solid-state SPECT MPI international multicentre registry with clinical data and follow-up for major adverse cardiac events (MACE) were used to train ML for MACE prediction as a continuous probability (ML score), using 10-fold repeated hold-out testing to separate test from training data. Three ML score thresholds (ML1, ML2, and ML3) were derived by matching the cancellation rates achieved by physician interpretation and two clinical selection rules. Annual MACE rates were compared in patients selected for rest scan cancellation between approaches. Patients selected for rest scan cancellation with ML had lower annualized MACE rates than those selected by physician interpretation or clinical selection rules (ML1 vs. physician interpretation: 1.4 ± 0.1% vs. 2.1 ± 0.1%; ML2 vs. clinical selection: 1.5 ± 0.1% vs. 2.0 ± 0.1%; ML3 vs. stringent clinical selection: 0.6 ± 0.1% vs. 1.7 ± 0.1%, all P < 0.0001) at matched cancellation rates (60 ± 0.7, 64 ± 0.7, and 30 ± 0.6%). Annualized all-cause mortality rates in populations recommended for rest cancellation by physician interpretation, clinical selection approaches were higher (1.3%, 1.2%, and 1.0%, respectively) compared with corresponding ML thresholds (0.6%, 0.6%, and 0.2%). ML, using clinical and stress imaging data, can be used to automatically recommend cancellation of rest SPECT MPI scans, while ensuring higher prognostic safety than current clinical approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.