Abstract

BackgroundRecently, more and more studies investigated the association of inflammation parameters such as the Platelet Lymphocyte Ratio (PLR) and the prognosis of various cancers. However, the prognostic role of PLR in cancer remains controversial.MethodsWe conducted a meta-analysis of published studies to evaluate the prognostic value of PLR in various cancers. In order to investigate the association between PLR and overall survival (OS), the hazard ratio (HR) and its 95% confidence interval (CI) were calculated.ResultsA total of 13964 patients from 26 studies were included in the analysis. The summary results showed that elevated PLR was a negative predictor for OS with HR of 1.60 (95%CI: 1.35–1.90; Pheterogeneity <0.001). Subgroup analysis revealed that increased PLR was a negative prognostic marker in patients with gastric cancer (HR = 1.35, 95%CI: 0.80–2.25, Pheterogeneity = 0.011), colorectal cancer (HR = 1.65, 95%CI: 1.33–2.05, Pheterogeneity = 0.995), hepatocellular carcinoma (HR = 3.07, 95% CI: 2.04–4.62, Pheterogeneity = 0.133), ovarian cancer (HR = 1.57, 95%CI: 1.07–2.31, Pheterogeneity = 0.641) and non-small cell lung cancer (NSCLC) (HR = 1.85, 95% CI: 1.42–2.41, Pheterogeneity = 0.451) except for pancreatic cancer (HR = 1.00, 95%CI: 0.92–1.09, Pheterogeneity = 0.388).ConclusionThe meta-analysis demonstrated that PLR could act as a significant biomarker in the prognosis of various cancers.

Highlights

  • For a long time, cancer is one of the leading causes of death and a major public health problem worldwide [1]

  • The summary results showed that elevated Platelet Lymphocyte Ratio (PLR) was a negative predictor for overall survival (OS) with hazard ratio (HR) of 1.60 (95%confidence interval (CI): 1.35–1.90; Pheterogeneity,0.001)

  • Subgroup analysis revealed that increased PLR was a negative prognostic marker in patients with gastric cancer (HR = 1.35, 95%CI: 0.80–2.25, Pheterogeneity = 0.011), colorectal cancer (HR = 1.65, 95%CI: 1.33–2.05, Pheterogeneity = 0.995), hepatocellular carcinoma (HR = 3.07, 95% confidence intervals (95% CI): 2.04–4.62, Pheterogeneity = 0.133), ovarian cancer (HR = 1.57, 95%CI: 1.07–2.31, Pheterogeneity = 0.641) and non-small cell lung cancer (NSCLC) (HR = 1.85, 95% CI: 1.42–2.41, Pheterogeneity = 0.451) except for pancreatic cancer (HR = 1.00, 95%CI: 0.92–1.09, Pheterogeneity = 0.388)

Read more

Summary

Introduction

Cancer is one of the leading causes of death and a major public health problem worldwide [1]. In spite of the increased survival rate of cancer patients in the last decades, newer diagnostic methods with improved sensitivity and specificity are necessary for the proper detection and prognosis of cancer [2]. Both clinicians and researchers have made widespread efforts to identify biomarkers that predict progression of the disease, response to treatment, and survival. More and more evidence showed that a systemic inflammatory response could play an important role in the development and progression of cancer [3,4,5,6]. The prognostic role of PLR in cancer remains controversial

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call