Abstract

BackgroundGlobally, gastrointestinal (GI) cancer is one of the most prevalent malignant tumors. However, studies have not established glycolysis-related gene signatures that can be used to construct accurate prognostic models for GI cancers in the Asian population. Herein, we aimed at establishing a novel glycolysis-related gene expression signature to predict the prognosis of GI cancers.MethodsFirst, we evaluated the mRNA expression profiles and the corresponding clinical data of 296 Asian GI cancer patients in The Cancer Genome Atlas (TCGA) database (TCGA-LIHC, TCGA-STAD, TCGA-ESCA, TCGA-PAAD, TCGA-COAD, TCGA-CHOL and TCGA-READ). Differentially expressed mRNAs between GI tumors and normal tissues were investigated. Gene Set Enrichment Analysis (GSEA) was performed to identify glycolysis-related genes. Then, univariate, LASSO regression and multivariate Cox regression analyses were performed to establish a key prognostic glycolysis-related gene expression signature. The Kaplan-Meier and receiver operating characteristic (ROC) curves were used to evaluate the efficiency and accuracy of survival prediction. Finally, a risk score to predict the prognosis of GI cancers was calculated and validated using the TCGA data sets. Furthermore, this risk score was verified in two Gene Expression Omnibus (GEO) data sets (GSE116174 and GSE84433) and in 28 pairs of tissue samples.ResultsPrognosis-related genes (NUP85, HAX1, GNPDA1, HDLBP and GPD1) among the differentially expressed glycolysis-related genes were screened and identified. The five-gene expression signature was used to assign patients into high- and low-risk groups (p < 0.05) and it showed a satisfactory prognostic value for overall survival (OS, p = 6.383 × 10–6). The ROC curve analysis revealed that this model has a high sensitivity and specificity (0.757 at 5 years). Besides, stratification analysis showed that the prognostic value of the five-gene signature was independent of other clinical characteristics, and it could markedly discriminate between GI tumor tissues and normal tissues. Finally, the expression levels of the five prognosis-related genes in the clinical tissue samples were consistent with the results from the TCGA data sets.ConclusionsBased on the five glycolysis-related genes (NUP85, HAX1, GNPDA1, HDLBP and GPD1), and in combination with clinical characteristics, this model can independently predict the OS of GI cancers in Asian patients.

Highlights

  • Gastrointestinal (GI) cancer is one of the most prevalent malignant tumors

  • Based on the five glycolysis-related genes (NUP85, HCLS1 associated protein X-1 (HAX1), Glucosamine6-phosphate deaminase 1 (GNPDA1), High density lipoprotein binding protein (HDLBP) and Glycerol-3-phosphate dehydrogenase 1 (GPD1)), and in combination with clinical characteristics, this model can independently predict the overall survival (OS) of GI cancers in Asian patients

  • From the Cancer Genome Atlas (TCGA) database, we identified a glycolytic associated five-gene signature that is closely related to overall survival (OS) of GI cancer patients in the Asian population

Read more

Summary

Introduction

Gastrointestinal (GI) cancer is one of the most prevalent malignant tumors. Studies have not established glycolysis-related gene signatures that can be used to construct accurate prognostic models for GI cancers in the Asian population. We aimed at establishing a novel glycolysis-related gene expression signature to predict the prognosis of GI cancers. Cancers of the gastrointestinal (GI) tract, including those that originate from cells in the esophagus, stomach, exocrine pancreas, liver, gallbladder, biliary tract, small intestines, colon, rectum and anus, are associated with a high prevalence and mortality rate [1]. The prognosis of GI cancer patients relies on traditionally recognized prognostic factors, such as pathological staging, histological grade and immunohistochemical studies of molecular markers [5]. Prognostic indicators are of great significance in developing new treatment strategies, independent indicators for better prognosis should be urgently established

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call