Abstract

Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer (NSCLC), with poor treatment outcomes worldwide. Dynamin-related protein 1 (DRP1), which is encoded by the dynamin 1-like (DNM1L) gene, acts as a regulator of mitochondrial fission and plays crucial roles in tumor initiation and progression. However, the clinical value and immune regulation of DNM1L in LUAD have not been explored. We comprehensively analyzed the expression of DNM1L in the LUAD cohort of the Human Protein Atlas (HPA) and the University of The ALabama at Birmingham CANcer data analysis Portal (UALCAN) databases. Kaplan-Meier plotter, in addition to the PrognoScan database, was used to estimate the correlation between DNM1L expression and survival outcome of LUAD patients. The association between the immune tumor microenvironment (TME) and DNM1L expression in LUAD was evaluated based on the Tumor IMmune Estimation Resource (TIMER)2.0 database. Finally, the functions of DNM1L were validated in vitro experiments, including reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot, wound healing assays, and transwell assays. DNM1L was overexpressed in LUAD compared to healthy control tissues and was regarded as an independent prognostic factor. Overexpression of DNM1L was significantly related to clinical variables and poor survival outcomes of LUAD patients. Moreover, DNM1L expression was positively associated with the expression of key genes involved in the regulation of immune cell subsets, including T helper (Th)2 cells, Th cells, B cells, CD8 T cells, dendritic cells, and mast cells. In contrast, DNM1L was negatively correlated with the infiltrating levels of myeloid dendritic cells and B cells. Furthermore, DNM1L may play a role in regulating immune cell infiltration and have prognostic value in LUAD patients. Finally, the in vitro experiments showed that increased DNM1L significantly promoted the proliferation and migration of LUAD cells. This study suggested that DNM1L may play an important role in regulating the proliferation and migration of LUAD cells as well as the infiltration of tumor-related immune cells, which suggests DNM1L was a potential therapeutic target in LUAD. Further studies are however warranted to define its exact mechanism of action and potential therapeutic significance in LUAD patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.