Abstract

BackgroundNumerous studies have revealed that the abnormal expression of pyroptosis-related genes is closely related to the prognosis of lung adenocarcinoma (LUAD); however, a comprehensive analysis has yet to be conducted. This study aimed to reveal the influence of pyroptosis-related genes on the prognosis of LUAD and establish a prognostic model based on those genes, in order to evaluate the prognosis of LUAD.MethodsThe data of tumor and normal samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential analysis was used to identify pyroptosis-related genes (obtained from the GeneCards database) that were differentially expressed (DE) in TCGA database. Univariate and stepwise multivariate Cox proportional hazards regression analyses were used to screen feature genes related to LUAD overall survival (OS) and construct gene signature. Gene set enrichment analysis (GSEA) was then performed to reveal potential functions related to gene signature. Finally, the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to reveal distinctions in each cell-subtype groups in the immune landscape of LUAD.ResultsOverall, 26 DE genes (DEGs) associated with pyroptosis were obtained. Among them, 4 (MKI67, BTK, MST1, and TUBB6) were selected as prognostic genes and a 4-gene signature with a good prognostic performance in the TCGA and GEO was constructed. The gene signature was shown to be an independent prognostic factor of LUAD in subsequent analysis. Functional enrichment indicated that the 4-gene signature may participate in the tumorigenesis and development of LUAD through various pathways related to tumor progression to play a prognostic role in LUAD. Additionally, the results of the immune landscape indicated that the 4-gene signature may affect the prognosis of LUAD via cooperating with changes in the immune microenvironment.ConclusionsThe key biomarkers and pathways identified in this study would deepen the comprehension of the molecular mechanism of pyroptosis in LUAD. More importantly, the 4-gene signature may serve as a novel potential prognostic model for LUAD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call