Abstract

Predicting the clinical outcomes of primary diffuse large B-cell lymphoma of the central nervous system (PCNS-DLBCL) to methotrexate-based combination immunochemotherapy treatment in advance and therefore administering the tailored treatment to the individual is consistent with the principle of predictive, preventive, and personalized medicine (PPPM/3PM). The red blood cell distribution width (RDW) has been reported to be associated with the clinical outcomes of multiple cancer. However, its prognostic role in PCNS-DLBCL is yet to be evaluated. Therefore, we aimed to effectively stratify PCNS-DLBCL patients with different prognosis in advance and early identify the patients who were appropriate to methotrexate-based combination immunochemotherapy based on the pretreatment level of RDW and a clinical prognostic model. A prospective-retrospective, multi-cohort study was conducted from 2010 to 2020. We evaluated RDW in 179 patients (retrospective discovery cohorts of Huashan Center and Renji Center and prospective validation cohort of Cancer Center) with PCNS-DLBCL treated with methotrexate-based combination immunochemotherapy. A generalized additive model with locally estimated scatterplot smoothing was used to identify the relationship between pretreatment RDW levels and clinical outcomes. The high vs low risk of RDW combined with MSKCC score was determined by a minimal P-value approach. The clinical outcomes in different groups were then investigated. The pretreatment RDW showed a U-shaped relationship with the risk of overall survival (OS, P = 0.047). The low RDW (< 12.6) and high RDW (> 13.4) groups showed significantly worse OS (P < 0.05) and progression-free survival (PFS; P < 0.05) than the median group (13.4 > RDW > 12.6) in the discovery and validation cohort, respectively. RDW could predict the clinical outcomes successfully. In the discovery cohort, RDW achieved the area under the receiver operating characteristic curve (AUC) of 0.9206 in predicting the clinical outcomes, and the predictive value (AUC = 0.7177) of RDW was verified in the validation cohort. In addition, RDW combined with MSKCC predictive model can distinguish clinical outcomes with the AUC of 0.8348 for OS and 0.8125 for PFS. Compared with the RDW and MSKCC prognosis variables, the RDW combined with MSKCC scores better identified a subgroup of patients with favorable long-term survival in the validation cohort (P < 0.001). RDW combined MSKCC score remained to be independently associated with clinical outcomes by multivariable analysis. Based on the pretreatment RDW and MSKCC scores, a novel predictive tool was established to stratify PCNS-DLBCL patients with different prognosis effectively. The predictive model developed accordingly is promising to judge the response of PCNS-DLBCL to methotrexate-based combination immunochemotherapy treatment. Thus, hematologists and oncologists could tailor and adjust therapeutic modalities by monitoring RDW in a prospective rather than the reactive manner, which could save medical expenditures and is a key concept in 3PM. In brief, RDW combined with MSKCC model could serve as an important tool for predicting the response to different treatment and the clinical outcomes for PCNS-DLBCL, which could conform with the principles of predictive, preventive, and personalized medicine. The online version contains supplementary material available at 10.1007/s13167-022-00290-5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call