Abstract

BackgroundPrevious study has shown that chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family member 4 (CMTM4) can bind and maintain programmed cell death ligand 1 (PD-L1) expression to promote tumor progression by alleviating the suppression of tumor-specific T cell activity, suggesting its potential role in tumor immunotherapy. However, the role of CMTM4 in tumor immunity has not been well clarified, especially in hepatocellular carcinoma (HCC).MethodsThe protein expression of CMTM4/PD-L1/CD4/CD8 was detected by immunohistochemistry (IHC) detection in 90 cases of HCC tissues. The mRNA expression profiles and related prognosis data were obtained from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC). Two immune therapy cohorts were from Imvigor210 and GSE176307.ResultsThough the single protein expression of CMTM4, PD-L1, CD4 or CD8 in HCC tissues by IHC detection didn’t show a significant relationship with the prognosis of HCC patients, we found that high co-expression of CMTM4/PD-L1/CD4 showed a good prognosis of HCC patients. Further Timer 2.0 analysis identified that HCC patients with high expression of CMTM4/PD-L1 and high infiltration of CD4+ T cells had a better overall survival than those with low infiltration of CD4+ T cells. Moreover, a series of bioinformatics analyses revealed that CMTM4-related genes posed important effects on prognosis and immunity in HCC patients, and CMTM4 had a positive correlation with infiltration of CD4+ and CD8+ T cells in HCC. At last, we used two immunotherapy cohorts to verify that the combination of CMTM4 with PD-L1 could improve the prognosis of tumor patients underwent immunotherapy.ConclusionsCMTM4 and PD-L1 co-expression with T cell infiltration shows prognostic significance in HCC, suggesting combined effect from multiple proteins should be considered in HCC treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.