Abstract

PurposeTo develop and validate a radiomics model based on high-resolution T2WI and a clinical-radiomics model for tumour-stroma ratio (TSR) evaluation with a gold standard of TSR evaluated by rectal specimens without therapeutic interference and further apply them in prognosis prediction of locally advanced rectal cancer (LARC) patients who received neoadjuvant chemoradiotherapy. MethodsA total of 178 patients (mean age: 59.35, range 20–85 years; 65 women and 113 men) with rectal cancer who received surgery alone from January 2016 to October 2020 were enrolled and randomly separated at a ratio of 7:3 into training and validation sets. A senior radiologist reviewed after 2 readers manually delineated the whole tumour in consensus on preoperative high-resolution T2WI in the training set. A total of 1046 features were then extracted, and recursive feature elimination embedded with leave-one-out cross validation was applied to select features, with which an MR-TSR evaluation model was built containing 6 filtered features via a support vector machine classifier trained by comparing patients’ pathological TSR. Stepwise logistic regression was employed to integrate clinical factors with the radiomics model (Fusion-TSR) in the training set. Later, the MR-TSR and Fusion-TSR models were replicated in the validation set for diagnostic effectiveness evaluation. Subsequently, 243 patients (mean age: 53.74, range 23–74 years; 63 women and 180 men) with LARC from October 2012 to September 2017 who were treated with NCRT prior to surgery and underwent standard pretreatment rectal MR examination were enrolled. The MR-TSR and Fusion-TSR were applied, and the Kaplan–Meier method and log-rank test were used to compare the survival of patients with different MR-TSR and Fusion-TSR. Cox proportional hazards regression was used to calculate the hazard ratio (HR). ResultsBoth the MR-TSR and Fusion-TSR models were validated with favourable diagnostic power: the AUC of the MR-TSR was 0.77 (p = 0.01; accuracy = 69.8 %, sensitivity = 88.9 %, specificity = 65.9 %, PPV = 34.8 %, NPV = 96.7 %), while the AUC of the Fusion-TSR was 0.76 (p = 0.014; accuracy = 67.9 %, sensitivity = 88.9 %, specificity = 63.6 %, PPV = 33.3 %, NPV = 96.6 %), outperforming their effectiveness in the training set: the AUC of the MR-TSR was 0.65 (p = 0.035; accuracy = 66.4 %, sensitivity = 61.9 %, specificity = 67.3 %, PPV = 27.7 %, NPV = 90.0 %), while the AUC of the Fusion-TSR was 0.73 (p = 0.001; accuracy = 73.6 %, sensitivity = 71.4 %, specificity = 74.0 %, PPV = 35.73 %, NPV = 92.8 %). With further prognostic analysis, the MR-TSR was validated as a significant prognostic factor for DFS in LARC patients treated with NCRT (p = 0.020, HR = 1.662, 95 % CI = 1.077–2.565), while the Fusion-TSR was a significant prognostic factor for OS (p = 0.005, HR = 2.373, 95 % CI = 1.281–4.396). ConclusionsWe developed and validated a radiomics TSR and a clinical-radiomics TSR model and successfully applied them to better risk stratification for LARC patients receiving NCRT and for better decision making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call