Abstract

The accurate prognostic prediction is essential for precise diagnosis and treatment of carcinoma. In addition to clinical survival prediction method, many computational methods based on transcriptomic data have been proposed to build the prediction models and study the prognosis of cancer patients. We propose a differential-regulatory-network-embedded deep neural network (DRE-DNN) method by integrating differential regulatory analysis based on gene co-expression network and deep neural network (DNN) method. From three public hepatocellular carcinoma (HCC) datasets, we derive differential regulatory network and embed regulatory information into DNN. By employing 1869 differential regulatory genes and survival data, we apply DRE-DNN to build a prediction model. We compare our method with the one which has all gene features in normal DNN, and results show that our method has better generalization ability and accuracy. We modify the normal DNN and develop an efficient method to predict prognosis of HCC from gene expression data. Our method decreases the inconsistence caused by the overfitting problem when the training sample size is small. DRE-DNN is also extendable for prognostic prediction of other cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.