Abstract

Predicting Parkinson's disease (PD) progression may enable better adaptive and targeted treatment planning. Develop a prognostic model using multiple, easily acquired longitudinal measures to predict temporal clinical progression from Hoehn and Yahr (H&Y) stage 1 or 2 to stage 3 in early PD. Predictive longitudinal measures of PD progression were identified by the joint modeling method. Measures were extracted by multivariate functional principal component analysis methods and used as covariates in Cox proportional hazards models. The optimal model was developed from the Parkinson's Progression Marker Initiative (PPMI) data set and confirmed with external validation from the Longitudinal and Biomarker Study in PD (LABS-PD) study. The proposed prognostic model with longitudinal information of selected clinical measures showed significant advantages in predicting PD temporal progression in comparison to a model with only baseline information (iAUC=0.812 vs. 0.743). The modeling results allowed the development of a prognostic index for categorizing PD patients into low, mid, and high risk of progression to HY 3 that is offered to facilitate physician-patient discussion on prognosis. Incorporating longitudinal information of multiple clinical measures significantly enhances predictive performance of prognostic models. Furthermore, the proposed prognostic index enables clinicians to classify patients into different risk groups, which could be adaptively updated as new longitudinal information becomes available. Modeling of this type allows clinicians to utilize observational data sets that inform on disease natural history and specifically, for precision medicine, allows the insertion of a patient's clinical data to calculate prognostic estimates at the individual case level. © 2021 International Parkinson and Movement Disorder Society.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call