Abstract

A network theory model based on a nonlinear differential equation (Naitoh in Jpn J Ind Appl Math 28:15-26, 2011a; Proceedings of JSST 2011 international conference on modeling and simulation technology, pp 322–327, b, Naitoh and Inoue in J Artif Life Robot 18:127–132, 2013) macroscopically showed a possibility for explaining interaction mechanism of six groups of molecules on information and function in human beings. In this paper, we show that time-dependent computational results of the number of vigorous cells agreed well with individual medical histories of illness for actual patients. Computational results showed illness with three types of recovery speeds: illness with fast recovery speed having recovery period of several months, with medium speed like leukemia or small cell carcinoma having one or two-year-recovery period, and with low speed having recovery period about five years like the symptom of illness named “anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis”. It is stressed that both of the period under unresponsive state in early stage and total years needed to recover cognitive function completely in anti-NMDA receptor encephalitis can be simulated. These results may indicate that the model macroscopically and essentially describes time-dependent activation level of human beings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call