Abstract

Precisely battery state of health estimation and remaining useful lifetime prediction are crucial factors in ensuring the reliability and safety for system operation. This paper thus focuses on the short-term battery state of health estimation and long-term battery remaining useful lifetime prediction. A novel hybrid method by fusion of partial incremental capacity and Gaussian process regression is proposed and dual Gaussian process regression models are employed to forecast battery health conditions. First, the initial incremental capacity curves are filtered by using the advanced signal process technology. Second, the important health feature variables are extracted from partial incremental capacity curves using correlation analysis method. Third, the Gaussian process regression is applied to model the short-term battery SOH estimation using the feature variables. Forth, an autoregressive long-term battery remaining useful lifetime model is established using the results of battery SOH values and previous output. The predictive capability and effectiveness of two models are demonstrated by four battery datasets under different cycling test conditions. Otherwise, the robustness of the two models is verified using four datasets with different health levels. The experimental results show that the proposed method can provide accurate battery state of health estimation and remaining useful lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.