Abstract

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.

Highlights

  • Today, the world is challenged with the twin crises of fossil fuel reduction and environmental degradation

  • The potential of this work extends beyond the creation of engine maps to allow investigations into the transferability of heat release characteristics from a passenger car diesel engine to the industrial one; this study offers a guideline as a modeling outcome for prognostic assessment of the engine parameters obtained for the entire family of engines [29,30]

  • In comparing diesel fuel (I) and microalgae oil (IV), we found that the difference in indicated thermal efficiency comprises only 0.7–2.0% and the threshold value of 973 K for exhaust gas temperature was successfully reduced below the threshold level or, in the case of n = 1300 min−1, an obtained temperature level felt within the margin of experiment error

Read more

Summary

Introduction

The world is challenged with the twin crises of fossil fuel reduction and environmental degradation. The entire transport sector, including industries providing transportation, agree on the need to decarbonize traffic before 2050–2060 for the most developed and 2060–2080 for less developed economies [1,2]. This roadmap is primarily associated with the wider deployment of electric transport. If properly allocated to hard-to-decarbonized modes of transport, synfuels and sustainable biofuels, coupled with the direct electricity consumption through either electrified railways or battery electric vehicles, will all be important in the process of reducing ‘carbon intensity’ in transport [3].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.