Abstract

BackgroundPulmonary neuroendocrine tumors (Pulmonary NETs) include a wide spectrum of tumors, from the low-grade typical carcinoid (TC) and the intermediate-grade atypical carcinoid (AC), to the high-grade large-cell neuroendocrine carcinoma (LCNEC) and the small-cell carcinoma (SCLC). Epithelial Mesenchymal Transition (EMT) is a process initially recognised during several critical stages of embryonic development, which has more recently been implicated in promoting carcinoma invasion and metastasis. The initial stage of the EMT process begins with the deregulation of adhesion molecules, such as E-cadherin, due to transcriptional repression carried out by factors such as Snail family members, Twist and Foxc2.MethodsImmunohistochemistry for EMT markers and E-cadherin/ β-catenin complex in 134 patients with pulmonary NETs between 1990 – 2009. Analysis of potential associations with clinicopathological variables and survival.ResultsPulmonary NETs of high malignant potential (LCNEC and SCLC) had reduced expression of the adhesion molecules and high level expression of transcriptional repressors (Snail1, Snail2, Twist and Foxc2). Snail high expression levels and the loss of E-cadherin/β-catenin complex integrity had the strongest negative effect on the five-year survival rates. E-cadherin/β-catenin complex integrity loss independently predicted lymph node involvement and helped in Atypical Carcinoid (AC) vs Typical Carcinoid (TC) differential diagnosis. Importantly, among the TC group, the loss of E-cadherin/β-catenin complex integrity identified patients with an adverse clinical course despite favourable clinicopathological features.ConclusionThe immunohistochemical determination of E-cadherin/β-catenin complex integrity loss and EMT markers in the clinical setting might be a potential useful diagnostic and prognostic tool especially among the TC patients.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2407-14-855) contains supplementary material, which is available to authorized users.

Highlights

  • Pulmonary neuroendocrine tumors (Pulmonary NETs) include a wide spectrum of tumors, from the low-grade typical carcinoid (TC) and the intermediate-grade atypical carcinoid (AC), to the high-grade large-cell neuroendocrine carcinoma (LCNEC) and the small-cell carcinoma (SCLC)

  • E-cadherin and β-catenin were localized more frequently in the cytoplasm, so that E-cadherin/β-catenin complex loss of integrity was associated with LCNECs and SCLCs (p = 0.0001)

  • The integrity of E-cadherin/β-catenin complex was lost in the unfavourable categories of these clinicopathologic variables: tumor size (>3 cm) (p = 0.006), presence of lymph node metastasis (p = 0.0001), presence of necrosis (p = 0.0001), higher mitotic index (p = 0.0001) and tobacco consumption (p = 0.0001)

Read more

Summary

Introduction

Pulmonary neuroendocrine tumors (Pulmonary NETs) include a wide spectrum of tumors, from the low-grade typical carcinoid (TC) and the intermediate-grade atypical carcinoid (AC), to the high-grade large-cell neuroendocrine carcinoma (LCNEC) and the small-cell carcinoma (SCLC). Epithelial Mesenchymal Transition (EMT) is a process initially recognised during several critical stages of embryonic development, which has more recently been implicated in promoting carcinoma invasion and metastasis. Pulmonary Neuroendocrine Tumors (Pulmonary NETs) express differential characteristics of neuroendocrine cells scattered among epithelial cells [1,2]. They represent a broad clinico-pathologic spectrum and have variable morphologic features and biologic behaviours. Large Cell Neuroendocrine Carcinoma (LCNEC) and Small Cell Lung Carcinoma (SCLC), both poorly differentiated neuroendocrine tumors of high malignant potential

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call