Abstract

BackgroundSepsis is a common critical condition caused by the body’s overwhelming response to certain infective agents. Many biomarkers, including the serum lactate level, have been used for sepsis diagnosis and guiding treatment. Recently, the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) recommended the Sequential Organ Failure Assessment (SOFA) and the quick SOFA (qSOFA) rather than lactate for screening sepsis and assess prognosis. Here, we aim to explore and compare the prognostic accuracy of the lactate level, the SOFA score and the qSOFA score for mortality in septic patients using the public Medical Information Mart for Intensive Care III database (MIMIC III).MethodsThe baseline characteristics, laboratory test results and outcomes for sepsis patients were retrieved from MIMIC III. Survival was analysed by the Kaplan-Meier method. Univariate and multivariate analysis was performed to identify predictors of prognosis. Receiver operating characteristic curve (ROC) analysis was conducted to compare lactate with SOFA and qSOFA scores.ResultsA total of 3713 cases were initially identified. The analysis cohort included 1865 patients. The 24-h average lactate levels and the worst scores during the first 24 h of ICU admission were collected. Patients in the higher lactate group had higher mortality than those in the lower lactate group. Lactate was an independent predictor of sepsis prognosis. The AUROC of lactate (AUROC, 0.664 [95% CI, 0.639–0.689]) was significantly higher than that of qSOFA (AUROC, 0.547 [95% CI, 0.521–0.574]), and it was similar to the AUROC of SOFA (AUROC, 0.686 [95% CI, 0.661–0.710]). But the timing of lactate relative to SOFA and qSOFA scores was inconsistent.ConclusionLactate is an independent prognostic predictor of mortality for patients with sepsis. It has superior discriminative power to qSOFA, and shows discriminative ability similar to that of SOFA.

Highlights

  • Sepsis is a common critical condition caused by the body’s overwhelming response to certain infective agents

  • We further explored the prognostic accuracy of the serum lactate level, the Sequential Organ Failure Assessment (SOFA) and the quick SOFA (qSOFA) in predicting mortality in patients with sepsis

  • The project was approved by the institutional review boards of the Massachusetts Institute of Technology (MIT) and Beth Israel Deaconess Medical Center (BIDMC); there was no requirement for individual patient consent because unidentified health information of patients was used

Read more

Summary

Introduction

Sepsis is a common critical condition caused by the body’s overwhelming response to certain infective agents. Many biomarkers, including the serum lactate level, have been used for sepsis diagnosis and guiding treatment. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) recommended the Sequential Organ Failure Assessment (SOFA) and the quick SOFA (qSOFA) rather than lactate for screening sepsis and assess prognosis. Sepsis is a life-threatening complication of infection and characterized by physiologic, pathologic, and biochemical abnormalities [1, 2]. It is the tenth-most-common cause of death globally [3] and the most common cause of death in patients with infections, especially when sepsis is not identified and treated promptly. Sequential Organ Failure Assessment (SOFA) [13] and quick SOFA (qSOFA) [1, 14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.