Abstract
BackgroundPrognosis research studies (e.g. those deriving prognostic models or examining potential predictors of outcome) often collect information on time-varying predictors after their intended moment of use, sometimes using a measurement method different to that which would be used. We aimed to illustrate how estimates of predictor-outcome associations and prognostic model performance obtained from such studies may differ to those at the earlier, intended moment of use.MethodsWe analysed data from two primary care cohorts of patients consulting for non-inflammatory musculoskeletal conditions: the Prognostic Research Study (PROG-RES: n = 296, aged >50 years) and the Primary care Osteoarthritis Screening Trial (POST: n = 756, >45 years). Both cohorts had collected comparable information on a potentially important time-varying predictor (current pain intensity: 0–10 numerical rating scale), other predictors (age, gender, practice) and outcome (patient-perceived non-recovery at 6 months). Using logistic regression models, we compared the direction and magnitude of predictor-outcome associations and model performance measures under two scenarios: (i) current pain intensity ascertained by the treating general practitioner in the consultation (the intended moment of use) and (ii) current pain intensity ascertained by a questionnaire mailed several days after the consultation.ResultsIn both cohorts, the predictor-outcome association was substantially weaker for pain measured at the consultation (OR (95% CI): PROG-RES 1.06 (0.95, 1.18); POST 1.04 (0.96, 1.12)) than for pain measured in the questionnaire (PROG-RES 1.34 (1.20, 1.48); POST 1.26 (1.18, 1.34)). The c-statistic of the multivariable model was lower when pain was measured at the consultation (c-statistic (95% CI): PROG-RES 0.57 (0.51, 0.64); POST 0.66 (0.62, 0.70)) than when pain was measured in the questionnaire (PROG-RES 0.69 (0.63, 0.75); POST 0.72 (0.68, 0.76)), reflecting the lower OR for pain at the consultation.ConclusionsPrognostic research studies ideally should measure time-varying predictors at their intended moment of use and using the intended measurement method. Otherwise, they may produce substantially different estimates of predictor-outcome associations and model performance. Researchers should report when, how and where predictors were measured and identify any significant departures from their intended use that may limit the applicability of findings in practice.Trial registrationThe protocol for the PROG-RES cohort data collection and primary analysis has been published in an open-access journal (Mallen et al., BMC Musculoskelet Disord 7:84, 2006). The POST trial was registered (ISRCTN40721988; date of registration: 21 June 2011; date of enrolment of the first participant: 3 October 2011) and had a pre-specified protocol covering primary analysis. There was no published protocol for the current secondary analyses presented in this manuscript.
Highlights
IntroductionPrognosis research studies (e.g. those deriving prognostic models or examining potential predictors of outcome) often collect information on time-varying predictors after their intended moment of use, sometimes using a measurement method different to that which would be used
Prognosis research studies often collect information on time-varying predictors after their intended moment of use, sometimes using a measurement method different to that which would be used
Eligible patients lost to follow-up at 6 months did not differ by age or gender but had slightly higher mean pain ratings at the point of care and in the questionnaire in PROG-RES (point of care: mean (SD): responders 5.9 (2.2) vs non-responders 6.4 (2.2); questionnaire: 5.5 (2.6) vs 5.6 (2.5)) and in Primary care Osteoarthritis Screening Trial (POST) (6.2 (2.1) vs 6.6 (2.0); 5.3 (2.6) vs 5.8 (2.6))
Summary
Prognosis research studies (e.g. those deriving prognostic models or examining potential predictors of outcome) often collect information on time-varying predictors after their intended moment of use, sometimes using a measurement method different to that which would be used. This approach offers several advantages, as it facilitates: 1) a wider range of predictor information to be collected than would be possible within the time-constrained primary care consultation, 2) greater standardisation of data collection procedures, 3) a “cooling off period” between being informed about the study at the point of care, and consenting to provide information on potential predictors that would not be considered part of routine care This practice carries potential limitations when the measured values of the predictors included in these studies are time-dependent and when they may be sensitive to the choice of measurement, mode of administration and other contextual influences on participants’ responses [15,16,17]. This problem is what is referred to as indirectness in the GRADE guidelines [18], the effect of which could be assessed in a particular prognostic model if external validation was performed in a setting and timeframe the same as when the model would be used in practice, as recommended in the REMARK guidelines [19]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.