Abstract

Gold standard prognostic models for long-term outcome in patients with severe traumatic brain injury (TBI) use admission characteristics and are considered useful in some areas but not for clinical practice. In this study, we aimed to build prognostic models for 6-month Glasgow Outcome Score (GOS) in patients with severe TBI, combining baseline characteristics with physiological, treatment, and injury severity data collected during the first 24 h after injury. We used a training dataset of 472 TBI subjects and several data mining algorithms to predict the long-term neurological outcome. Performance of these algorithms was assessed in an independent (test) sample of 158 subjects. The least absolute shrinkage and selection operator (LASSO) led to the highest prediction accuracy (area under the receiving operating characteristic curve = 0.86) in the test set. The most important post-baseline predictor of GOS was the best motor Glasgow Coma Scale (GCS) recorded in the first day post-injury. The LASSO model containing the best motor GCS and baseline variables as predictors outperformed a model with baseline data only. TBI patient physiology of the first day-post-injury did not have a major contribution to patient prognosis six months after injury. In conclusion, 6-month GOS in patients with TBI can be predicted with good accuracy by the end of the first day post-injury, using hospital admission data and information on the best motor GCS achieved during those first 24 h post-injury. Passed the first day after injury, important physiological predictors could emerge from landmark analyses, leading to prediction models of higher accuracy than the one proposed in the current research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.