Abstract

The time-varying, dynamic, nonlinear, and other characteristics of lithium-ion batteries, as well as the capacity regeneration phenomenon, leads to the low accuracy of the traditional deep learning models in predicting the remaining useful life of lithium-ion batteries. This paper established a sequence-to-sequence model for remaining useful life prediction by combining the variational modal decomposition with bi-directional long short-term memory and Bayesian hyperparametric optimization. First, variational modal decomposition is used for noise reduction processing to maximize the retention of the original information of capacity degradation. Second, the capacity declining trend after noise reduction is modeled and predicted by the combination of bi-directional long-short term memory and temporal attention mechanism. In addition, a Bayesian optimizer is used to adaptively adjust the hyperparameters while training the model. Finally, the model was validated on NASA and CALCE data sets, and the results show that the model can accurately predict the future trend with only the initial 12% capacity data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call