Abstract

ObjectiveThis study was to investigate the role of Nrf2/ARE signaling pathway in the pleiotropic neuroprotective effect of progesterone (PROG) on traumatic brain injury (TBI).MethodsThe Nrf2-knockout (Nrf2−/−) and C57 mice were respectively subjected to a lateral cortical impact injury caused by a free-falling object and randomly divided into three groups: sham-operated, trauma, and trauma + PROG treatment group. The PROG treatment group was given PROG (32 mg/kg of body weight, intraperitoneal injection) immediately after injury. For all groups, a series of brain samples were obtained after trauma at 24 and 72 h, respectively. The cerebral edema was evaluated; the expression of IL-1β, IL-6, and TNF-α was measured using ELISA array, and the apoptosis index was detected by TUNEL. Flow cytometry was used to detect the intracellular calcium concentration.ResultsThe water content, the apoptosis index, the levels of inflammatory cytokine, and the intracellular calcium ion were significantly decreased with the PROG treatment in C57 mice with TBI model. However, the effect of PROG on TBI was not found in the Nrf2−/− mouse model of TBI.ConclusionsPROG reduced cerebral edema, apoptosis, inflammatory reaction, and intracellular calcium ion overload effects after TBI. These beneficial effects were not seen in the Nrf2−/− mouse model of TBI. The results from this study suggested that the Nrf2/ARE signal pathway may be involved in the pleiotropic neuroprotective effect of PROG on TBI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.