Abstract

The neuroactive metabolites of the steroid hormones progesterone (P4) and testosterone (T) are GABAergic modulators that influence cognition, yet, the specific effect of P4 and T on brain network activity remains poorly understood. Here, we investigated if a fundamental oscillatory network activity pattern, often related to cognitive control, frontal midline theta (FMT) oscillations, are modulated by steroids hormones, P4 and T. We measured the concentration of P4 and T using salivary enzyme immunoassay and FMT oscillations using high-density electroencephalography (EEG) during eyes-open resting-state in 55 healthy women and men. Electrical brain activity was analyzed using Fourier analysis, aperiodic signal fitting, and beamformer source localization. Steroid hormone concentrations and biological sex were used as predictors for scalp and source-estimated amplitude of theta oscillations. Elevated concentrations of P4 predicted increased amplitude of FMT oscillations across both sexes, and no relationship was found with T. The positive correlation with P4 was specific to the frontal midline electrodes and survived correction for the background aperiodic signal of the brain. Using source localization, FMT oscillations were localized to the frontal-parietal network (FPN). Additionally, theta amplitude within the FPN, but not the default mode network, positively correlated with P4 concentration. Our results suggest that P4 concentration modulates brain activity via upregulation of theta oscillations in the FPN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call