Abstract

Progesterone receptor membrane component 1 (PGRMC1) mediates antimitotic and antiapoptotic actions of progesterone in granulosa cells, which indicates that PGRMC1 may play a key role in maintaining the status of granulosa cells. The current study investigated the effects of progesterone on intracellular signaling involved in differentiation, follicle development, inflammatory responses, and antioxidation, and determined the role of PGRMC1 in these processes. Our results demonstrated that progesterone slowed follicle development and inhibited p-ERK1/2, p-p38, caspase-3, p-NF-κB, and p-IκB-α signals involved in differentiation, steroidogenesis, and inflammatory responses in granulosa cells. Progesterone inhibited the steroidogenic acute regulatory protein and the cholesterol side-chain cleavage enzymeand decreased pregnenolone production. A PGRMC1 inhibitor and a PGRMC1 small interfering RNA ablated these inhibitory effects of progesterone. Interfering with PGRMC1 functions also decreased cellular antioxidative effects induced by an oxidant. These results suggest that PGRMC1 might play a critical role in maintaining the status of granulosa cells and balancing follicle numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.