Abstract

ABSTRACT The neurodevelopmental toxicity of anesthetics has been confirmed repeatedly, and esketamine is now widely used in pediatric surgeries. Oligodendrocyte precursor cells (OPCs) evolved into mature oligodendrocytes (OLs) and formed myeline sheath during the early brain development. In this study, we investigated whether esketamine exposure interrupted development of OPCs and induced hypomyelination in rats. Further we explored the roles of PI3K/Akt phosphorylation in OPCs development and myelination. Sprague Dawley rats with different ages (postnatal day (P) 1, 3, 7 and 12) were exposed to 40mg/kg esketamine. Progesterone treatment was given (16 mg/kg per day for 3 days) 24 h after esketamine exposure via the intraperitoneal route. Corpus callosum tissues were collected at P8 or P14 for western blot and immunofluorescence analyses. Esketamine exposure at P7 and P12 significantly reduced myelin basic protein (MBP) expression and CC1+ OLs number in corpus callosum. Esketamine exposure at P7 not only aggravated the mature OLs apoptosis, also decreased the OPCs proliferation and differentiation, which was related with dephosphorylation of PI3K/Akt. Progesterone was able to promote OPCs differentiation and ameliorate esketamine-induced hypomyelination by enhancing PI3K/Akt phosphorylation. Stage-dependent abnormality of OPCs/OLs after esketamine leads to the esketamine-induced hypomyelination. Esketamine interrupted OPCs evolution via PI3K/Akt signaling pathway, which can be ameliorated by progesterone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.