Abstract

BackgroundMany QTL have been detected in pigs, but very few of them have been fine-mapped up to the causal mutation. On SSC2, the IGF2-intron3-G3072A mutation has been described as the causative polymorphism for a QTL underlying muscle mass and backfat deposition, but further studies have demonstrated that at least one additional QTL should segregate downstream of this mutation. A marker-assisted backcrossing design was set up in order to confirm the segregation of this second locus, reduce its confidence interval and better understand its mode of segregation.ResultsFive recombinant full-sibs, with genotype G/G at the IGF2 mutation, were progeny-tested. Only two of them displayed significant QTL for fatness traits although four inherited the same paternal and maternal chromosomes, thus exhibiting the same haplotypic contrast in the QTL region. The hypothesis of an interaction with another region in the genome was proposed to explain these discrepancies and after a genome scan, four different regions were retained as potential interacting regions with the SSC2 QTL. A candidate interacting region on SSC13 was confirmed by the analysis of an F2 pedigree, and in the backcross pedigree one haplotype in this region was found to mask the SSC2 QTL effect.ConclusionsAssuming the hypothesis of interactions with other chromosomal regions, the QTL could be unambiguously mapped to a 30 cM region delimited by recombination points. The marker-assisted backcrossing design was successfully used to confirm the segregation of a QTL on SSC2 and, because full-sibs that inherited the same alleles from their two parents were analysed, the detection of epistatic interactions could be performed between alleles and not between breeds as usually done with the traditional Line-Cross model. Additional analyses of other recombinant sires should provide more information to further improve the fine-mapping of this locus, and confirm or deny the interaction identified between chromosomes 2 and 13.

Highlights

  • Many QTL have been detected in pigs, but very few of them have been fine-mapped up to the causal mutation

  • We present QTL analyses in advanced backcross families produced after multiple directed crosses from a F2 Large White (LW) × MS cross

  • These were produced from sires carrying recombinant LW × MS chromosomes with recombination points evenly distributed on SSC2p

Read more

Summary

Introduction

Many QTL have been detected in pigs, but very few of them have been fine-mapped up to the causal mutation. Many QTL underlying economically important traits have been detected in pigs over the last fifteen years [1] These QTL have usually been mapped in large intervals (10 30 cM) using experimental crosses between distant populations. We present QTL analyses in advanced backcross families produced after multiple directed crosses from a F2 LW × MS cross These were produced from sires carrying recombinant LW × MS chromosomes with recombination points evenly distributed on SSC2p. This strategy, known as marker-assisted backcrossing, is usually performed to refine QTL mapping intervals [10,12,13]. The aims of this study were: 1) to confirm and fine-map the fatness-related QTL segregating between 30 and 70 cM on SSC2 and 2) to determine the mode of inheritance of this QTL using the F2 and advanced backcross populations

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.