Abstract

AbstractPossible formation mechanisms of massive close binary black holes that can merge in the Hubble time to produce powerful gravitational wave bursts detected during advanced LIGO O1 science run are briefly discussed. The pathways include the evolution from field low-metallicity massive binaries, the dynamical formation in globular clusters and primordial black holes. Low effective black hole spins inferred for LIGO GW150914 and LTV151012 events are discussed. Population synthesis calculations of the expected spin and chirp mass distributions from the standard field massive binary formation channel are presented for different metallicities (from zero-metal Population III stars up to solar metal abundance). We conclude that that merging binary black holes can contain systems from different formation channels, discrimination between which can be made with increasing statistics of mass and spin measurements from ongoing and future gravitational wave observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.