Abstract

ABSTRACT We explore the effect of including progenitor mass- and metallicity-dependent yields, supernova rates and energetics on variations in elemental abundance ratios (particularly [α/Fe]) in dwarf galaxies. To understand how the scatter and overall trends in [α/Fe] are affected by including variable metal yields from a discretely sampled initial mass function, we run FIRE simulations of a dwarf galaxy (M⋆(z = 0$) \sim 10^6\rm \, M_{\odot })$ using nucleosynthetic yields from the NuGrid data base that depend on the stellar progenitor mass and metallicity. While NuGrid exhibits lower aggregate α-element production than default FIRE yields, we find that its explicit mass dependence, even when including turbulent metal diffusion, substantially widens the intrinsic scatter in the simulated [Fe/H]-[α/Fe] – a phenomenon visible in some observations of dwarf galaxies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call