Abstract

Platelet-derived growth factors (PDGFs) and their tyrosine kinase receptors play instrumental roles in embryonic organogenesis and diseases of adult organs. In particular, platelet-derived growth factor receptor-alpha (PDGFRα) is expressed by multipotent cardiovascular progenitors in mouse and human embryonic stem cell systems. Although cardiac PDGFRα expression has been studied in multiple species, little is known about its expression in the human heart. Using immunofluorescence, we analyzed PDGFRα expression in both human fetal and diseased adult hearts, finding strong expression in the interstitial cells of the epicardium, myocardium, and endocardium, as well as the coronary smooth muscle. Only rare endothelial cells and cardiomyocytes expressed PDGFRα. This pattern was consistent for both the fetal and adult diseased hearts, although more PDGFRα+ cardiomyocytes were noted in the latter. In vitro differentiation assays were then performed on the PDGFRα+ cell fraction isolated from the cardiomyocyte-depleted human fetal hearts. Protocols previously reported to direct differentiation to a cardiomyocyte (5-azacytidine), smooth muscle (PDGF-BB), or endothelial cell fates (vascular endothelial growth factor [VEGF]) were used. Although no significant cardiomyocyte differentiation was observed, PDGFRα+ cells generated significant numbers of smooth muscle cells (smooth muscle-α-actin+ and smooth muscle myosin+) and endothelial cells (CD31+). These data suggest that a subfraction of the cardiac PDGFRα+ populations are progenitors contributing predominantly to the vascular and mesenchymal compartments of the human heart. It may be possible to control the fate of these progenitors to promote vascularization or limit fibrosis in the injured heart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.