Abstract

ObjectiveObesity has been linked to an inflammation like state in the hypothalamus, mainly characterized by reactive gliosis (RG) of astrocytes and microglia. Here, using two diet models or pharmacological treatment, we assessed the effects of mild and drastic weight loss on RG, in the context of high-fat diet (HFD) induced obesity. MethodsWe subjected HFD-induced obese (DIO) male C57BL/6J mice to a weight loss intervention with a switch to standard chow, calorie restriction (CR), or treatment with the Glp1 receptor agonist Exendin-4 (EX4). The severity of RG was estimated by an ordinal scoring system based on fluorescence intensities of glial fibrillary acidic protein, ionized calcium-binding adapter molecule 1 positive (Iba1), cell numbers, and morphological characteristics. ResultsIn contrast to previous reports, DIO mice fed chronically with HFD showed no differences in microglial or astrocytic RG, compared to chow controls. Moreover, mild or profound weight loss had no impact on microglial RG. However, astrocyte RG was increased in CR and EX4 groups compared to chow fed animals and strongly correlated to body weight loss. Profound weight loss by either CR or EX4 was further linked to increased levels of circulating non-esterified free fatty acids. ConclusionsOverall, our data demonstrate that in a chronically obese state, astrocyte and microglial RG is indifferent from that observed in age-matched chow controls. Nonetheless, profound acute weight loss can induce astrocyte RG in the hypothalamic arcuate nucleus, possibly due to increased circulating NEFAs. This suggests that astrocytes may sense acute changes to both the dietary environment and body weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.