Abstract
The acute hippocampal slice preparation is a convenient, in vitro model widely used to study the biological basis of synaptic plasticity. Although slices may preserve their electrophysiological properties for several hours, profound molecular changes in response to the injury caused by the slicing procedure are likely to occur. To determine the magnitude and duration of these changes we examined the post-slicing expression kinetics of three classes of genes known to be implicated in long-term synaptic plasticity: glutamate AMPA receptors (GluR), transcription factors and neurotrophins. Slicing resulted in a striking loss of GluR1 and GluR3, but not of GluR2 proteins suggesting that rapid changes in the composition of major neurotransmitter receptors may occur. Slicing caused a significant induction of the transcription factors c-fos, zif268, CCAAT enhancer binding protein (C/EBP ) beta and delta mRNAs and of the neurotrophin brain-derived neurothophic factor (BDNF ) mRNA. In contrast, there was no augmentation, and sometimes a decline, in the levels of the corresponding proteins. These data reveal that significant discrepancies exist between the slice preparation and the intact hippocampus in terms of the metabolism of molecular components known to be involved in synaptic plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.