Abstract

As the market of electric vehicles is gaining popularity, large-scale commercialized or privately-operated charging stations are expected to play a key role as a technology enabler. In this paper, we study the problem of charging electric vehicles at stations with limited charging machines and power resources. The purpose of this study is to develop a novel profit maximization framework for station operation in both offline and online charging scenarios, under certain customer satisfaction constraints. The main goal is to maximize the profit obtained by the station owner and provide a satisfactory charging service to the customers. The framework includes not only the vehicle scheduling and charging power control, but also the managing of user satisfaction factors, which are defined as the percentages of finished charging targets. The profit maximization problem is proved to be NPcomplete in both scenarios (NP refers to “nondeterministic polynomial time”), for which two-stage charging strategies are proposed to obtain efficient suboptimal solutions. Competitive analysis is also provided to analyze the performance of the proposed online two-stage charging algorithm against the offline counterpart under non-congested and congested charging scenarios. Finally, the simulation results show that the proposed two-stage charging strategies achieve performance close to that with exhaustive search. Also, the proposed algorithms provide remarkable performance gains compared to the other conventional charging strategies with respect to not only the unified profit, but also other practical interests, such as the computational time, the user satisfaction factor, the power consumption, and the competitive ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.