Abstract

Deregulation process has created an intense competition with the participation of many generating companies (GENCOs) in a power market. Wholesale transactions (bids and offer) have to be cleared and settled in a shorter duration. Therefore, this necessitates for the system operator to quick and smarter decisions. In this problem formulation, profit based unit commitment (PBUC) problem aims in maximizing the profit of GENCOs. However demand satisfaction is not an obligation. Here, parallel nodal ant colony optimization (PNACO) approach mimicking ant's intelligence is used in the decision on committing generating units. The sub problem economic dispatch (ED) is carried out using parallel artificial bee colony (PABC) approach mimicking foraging behavior of bees. Profit based unit commitment (PBUC) must be obtained in less time even though there is a possible increase in generating units. Nowadays, as computing resources are available in plenty, effective utilization will be advantageous for reducing the time complexity for a large scale power system solution. The proposed approach uses a cluster of computers performing parallel operations in a distributed environment for obtaining the PBUC solution. The time complexity and the solution quality with respect to the number of processors in the cluster are thoroughly investigated. The effectiveness of the proposed approach for PBUC is first validated on a standard 10 unit system available in the literature and then analysis for computational efficiency using 1000 generating units, which is a duplicate form of standard 10 unit system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call