Abstract

Clustering high dimensional dataset is one of the major areas of research because of its widespread applications in many domains. However, a meaningful clustering in high dimensional dataset is a challenging issue due to (i) it usually contains many irrelevant dimensions which hide the clusters, (ii) the distance, which is the most common similarity measure in most of the methods, loses its meaning in high dimensions, and (iii) different clusters may exist in different subsets of dimensions in high dimensional dataset. Feature selection based clustering methods prominently solve the problem of clustering high dimensional data. However, finding all the clusters in one subset of few selected relevant dimensions is not justified as different clusters may exist in different subsets of dimensions. In this article, we propose an algorithm PROFIT (PROjective clustering algorithm based on FIsher score and Trimmed mean) which extends the idea of feature selection based clustering to projective clustering and works well with the high dimensional dataset consisting of attributes in continuous variable domain. It works in four phases: sampling phase, initialization phase, dimension selection phase and refinement phase. We consider five real datasets for experiments with different input parameters and consider three other well-known top-down subspace clustering methods PROCLUS, ORCLUS and PCKA along with our feature selection based non-subspace clustering method FAMCA for comparison. The obtained results are subjected to two well-known subspace clustering quality measures (Jagota index and sum of squared error) and Student’s t-test to determine the significant difference between clustering results. The obtained results and quality measures show effectiveness and superiority of the proposed method PROFIT to its competitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.