Abstract
Taking inspiration from the monadicity of complete atomic Boolean algebras, we prove that profinite modal algebras are monadic over Set. While analyzing the monadic functor, we recover the universal model construction - a construction widely used in the modal logic literature for describing finitely generated free modal algebras and the essentially finite generated subframes of their canonical models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.