Abstract
The eukaryote-associated marine bacterium Pseudoalteromonas tunicata produces a range of target-specific compounds that inhibit different types of marine organisms including invertebrate larvae and algal spores, as well as a broad spectrum of fungi, protozoa, and bacteria. The ability to produce such bioactive compounds is correlated to the expression of a yellow and a purple pigment in P. tunicata. To investigate the regulation and biosynthesis of the pigments and bioactive compounds, the expressed secretome of the pigmented wild-type P. tunicata and a nonpigmented mutant (wmpD-) defective in the type-II secretion pathway were compared. Secreted proteins were digested with trypsin, labeled using amine-specific isobaric tagging reagents (iTRAQ), and identified using two-dimensional SCX and nano C18 RP liquid-chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS). The iTRAQ labeling experiments enabled accurate measurement of the proteins identified in this work. A sequence-base prediction of P. tunicata secretome was also obtained and compared to the expressed proteome to determine the role of the type-II secretion pathway in this bacterium. Our results suggest that this secretion pathway has a role in iron transport and acquisition in P. tunicata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.