Abstract

Regulatory small RNA (sRNA) have been extensively studied in model Gram-negative bacteria, but the functional characterisation of these post-transcriptional gene regulators in Gram-positives remains a major challenge. Our previous work in enterohaemorrhagic E. coli utilised the proximity-dependant ligation technique termed CLASH (UV-crosslinking, ligation, and sequencing of hybrids) for direct high-throughput sequencing of the regulatory sRNA-RNA interactions within the cell. Recently, we adapted the CLASH technique and demonstrated that UV-crosslinking and RNA proximity-dependant ligation can be applied to Staphylococcus aureus, which uncovered the first RNA-RNA interaction network in a Gram-positive bacterium. In this chapter, we describe modifications to the CLASH technique that were developed to capture the RNA interactome associated with the double-stranded endoribonuclease RNase III in two clinical isolates of S. aureus. To briefly summarise our CLASH methodology, regulatory RNA-RNA interactions were first UV-crosslinked in vivo to the RNase III protein and protein-RNA complexes were affinity-purified using the His6-TEV-FLAG tags. Linkers were ligated to RNase III-bound RNA during library preparation and duplexed RNA-RNA species were ligated together to form a single contiguous RNA 'hybrid'. The RNase III-RNA binding sites and RNA-RNA interactions occurring on RNase III (RNA hybrids) were then identified by paired-end sequencing technology. RNase III-CLASH represents a step towards a systems-level understanding of regulatory RNA in Gram-positive bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call