Abstract
The final data-generation step of genome-wide profiling of any epigenetic parameter typically involves DNA deep sequencing which yields large datasets that must then be computationally analyzed both individually and collectively to comprehensively describe the epigenetic programming that dictates cell fate and function. Here, we describe computational pipelines for analysis of bulk mepigenomic profiling data, including whole-genome bisulfite sequencing (WGBS) to detect DNA methylation patterns, chromatin immunoprecipitation-sequencing (ChIP-seq) to detect genomic patterns of either specific histone modifications or bound transcription factors, the assay for transposase-accessible chromatin-sequencing (ATAC-seq) to detect genomic patterns of chromatin accessibility, and high-throughput chromosome conformation capture-sequencing (Hi-C-seq) to detect 3-dimensional interactions among distant genomic regions. In addition, we describe Chromatin State Discovery and Characterization (ChromHMM) methodology to integrate data from these individual analyses, plus that from RNA-seq analysis of gene expression, to obtain the most comprehensive overall assessment of epigenetic programming associated with gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.