Abstract

ABSTRACTBackground GBA mutations are the commonest genetic risk factor for Parkinson's disease (PD) and also impact disease progression.ObjectiveThe objective of this study was to define a biochemical profile that could distinguish GBA‐PD from non‐mutated PD.Methods29 GBA‐PD, 37 non‐mutated PD, and 40 controls were recruited; α‐synuclein levels in plasma, exosomes, and peripheral blood mononuclear cells were analyzed, GCase and main GCase‐related lysosomal proteins in peripheral blood mononuclear cells were measured.ResultsAssessment of plasma and exosomal α‐synuclein levels did not allow differentiation between GBA‐PD and non‐mutated PD; conversely, measurements in peripheral blood mononuclear cells clearly distinguished GBA‐PD from non‐mutated PD, with the former group showing significantly higher α‐synuclein levels, lower GCase activity, higher LIMP‐2, and lower Saposin C levels.ConclusionWe propose peripheral blood mononuclear cells as an easily accessible and manageable model to provide a distinctive biochemical profile of GBA‐PD, potentially useful for patient stratification or selection in clinical trials. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.