Abstract

BackgroundMachine learning (ML) methodology development for the classification of immune states in adaptive immune receptor repertoires (AIRRs) has seen a recent surge of interest. However, so far, there does not exist a systematic evaluation of scenarios where classical ML methods (such as penalized logistic regression) already perform adequately for AIRR classification. This hinders investigative reorientation to those scenarios where method development of more sophisticated ML approaches may be required.ResultsTo identify those scenarios where a baseline ML method is able to perform well for AIRR classification, we generated a collection of synthetic AIRR benchmark data sets encompassing a wide range of data set architecture-associated and immune state–associated sequence patterns (signal) complexity. We trained ≈1,700 ML models with varying assumptions regarding immune signal on ≈1,000 data sets with a total of ≈250,000 AIRRs containing ≈46 billion TCRβ CDR3 amino acid sequences, thereby surpassing the sample sizes of current state-of-the-art AIRR-ML setups by two orders of magnitude. We found that L1-penalized logistic regression achieved high prediction accuracy even when the immune signal occurs only in 1 out of 50,000 AIR sequences.ConclusionsWe provide a reference benchmark to guide new AIRR-ML classification methodology by (i) identifying those scenarios characterized by immune signal and data set complexity, where baseline methods already achieve high prediction accuracy, and (ii) facilitating realistic expectations of the performance of AIRR-ML models given training data set properties and assumptions. Our study serves as a template for defining specialized AIRR benchmark data sets for comprehensive benchmarking of AIRR-ML methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.