Abstract

Alterations in gut bacterial homeostasis result in changes in intestinal metabolites. To investigate the effects of alcohol on fecal metabolites and the role of cathelicidin-related antimicrobial peptide (CRAMP) in alcoholic liver disease (ALD), CRAMP knockout (KO) and their control wild type (WT) mice were fed a Lieber-DeCarli liquid diet with or without alcohol. Polar metabolites in mouse feces were analyzed by GC × GC-MS and 2DLC-MS, and the concentrations of short chain fatty acids (SCFAs) were measured by GC-MS. A total of 95 and 190 metabolites were detected by GC × GC-MS and 2DLC-MS, respectively. Among the significantly changed metabolites, taurine and nicotinic acid were decreased in WT mice fed alcohol, which were also down-regulated in KO mice fed without alcohol. Interestingly, these two metabolites were increased in KO mice fed alcohol compared to them in WT controls. Additionally, SCFAs were significantly decreased in WT mice fed alcohol and in KO mice fed without alcohol, whereas two branched-chain SCFAs were increased by alcohol treatment in KO mice. In summary, the analytical platforms employed in this study successfully dissected the alterations of polar metabolites and SCFAs in fecal samples, which helped understand the effects of alcohol consumption and CRAMP in intestinal metabolism and alcohol-induced liver injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.