Abstract

Individual glucosinolates (GSLs) were assessed to select cabbage genotypes for a potential breeding program. One hundred forty-six cabbage genotypes from different origins were grown in an open field from March to June 2019; the cabbage heads were used for GSL analyses. Seven aliphatics [glucoiberin (GIB), progoitrin (PRO), epi-progoitrin (EPI), sinigrin (SIN), glucoraphanin (GRA), glucoerucin (GER) and gluconapin (GNA)], one aromatic [gluconasturtiin (GNS)] and four indolyl GSLs [glucobrassicin (GBS), 4-hydroxyglucobrassicin (4HGBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (NGBS)] were found this study. Significant variation was observed in the individual GSL content and in each class of GSLs among the cabbage genotypes. Aliphatic GSLs were predominant (58.5%) among the total GSLs, followed by indolyl GSL (40.7%) and aromatic GSLs (0.8%), showing 46.4, 51.2 and 137.8% coefficients of variation, respectively. GIB, GBS and NGBS were the most common GSLs found in all genotypes. GBS was the most dominant GSL, with an average value of 3.91 µmol g−1 (0.79 to 13.14 µmol g−1). SIN, GIB, PRO and GRA were the other major GSLs, showing average values of 3.45, 1.50, 0.77 and 0.62 µmol g−1, respectively. The genotypes with relatively high contents of GBS, SIN, GIB and GRA warrant detailed studies for future breeding programs since the hydrolysis products of these GSLs have several anti-cancer properties.

Highlights

  • IntroductionGlucosinolates (GSLs), sulfur-containing compounds, are exclusively found in order Brassicales

  • Glucosinolates (GSLs), sulfur-containing compounds, are exclusively found in order Brassicales.They are derived from the amino acid biosynthetic pathway and are associated to the characteristic pungent flavor and odor of Brassica vegetables

  • The outer and inner leaf color was green in 130 cabbage genotypes and red in the remaining 16 genotypes

Read more

Summary

Introduction

Glucosinolates (GSLs), sulfur-containing compounds, are exclusively found in order Brassicales. They are derived from the amino acid biosynthetic pathway and are associated to the characteristic pungent flavor and odor of Brassica vegetables. GSLs are enzymatically hydrolyzed to isothiocyanates (ITCs), thiocyanates or nitriles by the endogenous enzyme myrosinase depending upon the nature of the GSLs [1,2]. About 132 different GSLs have been identified and characterized in a range of Brassica which have a specific GSL profile and content [3,4]. GSLs are classified into aliphatic, aromatic and indolyl compounds based on the structure of their side chain and the type of the precursor amino acid [2,5,6]. The GSLs and their breakdown products are known to have biologic and pharmacological effects, such as anti-fungicidal, anti-oxidative, anti-bacterial

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call