Abstract

Endogenous glycopeptides in serum are an invaluable resource for biomarker discovery. Due to the low abundance and the poor fragmentation in tandem mass spectrometry, the identification of endogenously intact glycopeptides still faces many challenges. Herein, an integrated platform is fabricated for the identification of N-linked and O-linked endogenously intact glycopeptides. In this platform, the high-temperature acid denaturation, ultrafiltration, and hydrophilic interaction chromatography steps are combined together for the highly efficient extraction of the endogenously intact glycopeptides from a small amount of serum. Additionally, the twin-spectra scheme and in silico deglycosylation strategy were applied for the identification of N-linked and O-linked endogenous glycopeptides, respectively. In total, 223 intact N-glycopeptides and 51 intact O-glycopeptides are identified from only 40 μL of the human serum sample. This is the first study reporting the identification of endogenously intact N-linked and O-linked glycopeptide and is also the largest data set of endogenously intact glycopeptides reported so far. The distributions of glycans among peptides and proteins and cleavage sites on peptides are further analyzed to seek the regulation of endogenous glycosylation for disease mechanism. The developed strategy provides a novel platform for the disease biomarker discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.