Abstract
Multiple symmetric lipomatosis (MSL) is a rare disorder characterized by aberrant multiple and symmetric subcutaneous adipose tissue accumulation in the face, neck, shoulders, back, chest and abdomen, severely affecting the quality of life of patients. At present, precise MSL etiology and pathogenesis remain to be elucidated. The present study first utilized a digital gene expression technique with a next-generation sequencing platform to profile differentially expressed genes in three cases of MSL vs. normal control tissue. cDNA libraries from these tissue specimens were constructed and DNA sequenced for identification of differentially expressed genes, which underwent bioinformatic analysis using the Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analyses. As a result, a total of 859 differentially expressed genes were identified, including 308 upregulated genes (C19orf80, Apelin, C21orf33, FAM166B and HSD11B2 were mostly upregulated 6.984-, 4.670-, 4.412-, 3.693- and 3.561-fold, respectively) and 551 downregulated genes [FosB proto-oncogene, AP-1 transcription factor subunit (FOSB), selectin (SEL) E, RAR related orphan receptor (ROR) B, salt inducible kinase (SIK)1 and epidermal growth factor-like protein (EGFL)6 were mostly downregulated −9.845, −8.243, −8.123, −7.702 and −7.664 fold, respectively). The GO functional enrichment analysis demonstrated these differentially expressed genes were predominantly involved in biological processes and cellular components, while the KEGG pathway enrichment analysis demonstrated that ribosome, non-alcoholic fatty liver disease, human T-lymphotropic virus type 1 (HTLV-I) infection and Alzheimer's disease pathways were altered in MSL. The PPI network data demonstrated ubiquitin C (UBC), translocator protein (TSPO), Jun Proto-Oncogene, AP-1 Transcription Factor (JUN) and FOS were among these differentially expressed genes that participated in regulation of adipocyte differentiation, although no previous study has linked them to MSL. In conclusion, the present study profiled differentially expressed genes in MSL and identified gene pathways that may be associated with MSL development and progression.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.