Abstract

Dysregulation of the production of pro-inflammatory mediators in microglia exacerbates the pathologic process of neurodegenerative disease. ROS actively affect microglia activation by regulating transcription factors that control the expression of pro-inflammatory genes. However, accurate information regarding the function of ROS in different subcellular organelles has not yet been established. Here, we analyzed the pattern of cytosolic and mitochondrial H2O2 formation in LPS-activated BV-2 microglia using the H2O2-sensitive protein HyPer targeted to specific subcellular compartments. Our results show that from an early time, cytosolic H2O2 started increasing constantly, whereas mitochondrial H2O2 rapidly increased later. In addition, we found that MAPK affected cytosolic H2O2, but not mitochondrial H2O2. Consequently, our study provides the basic information about subcellular H2O2 generation in activated microglia, and a useful tool for investigating molecular targets that can modulate neuroinflammatory responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.