Abstract

Tracking metabolic profiles has the potential to reveal crucial enzymatic steps that could be targeted in the drug discovery process. It is of special importance for various types of cancer known to be associated with substantial rewiring of metabolic networks. Here we introduce an integrated approach for the analysis of metabolome that allows us to simultaneously assess pathway activities (fluxes) and concentrations of a large number of the key components involved in central metabolism of human cells. This is accomplished by in vivo labeling with [U-13C]glucose followed by two-dimensional nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) analysis. A comprehensive isotopomer model was developed, which enabled us to compare fluxes through the key central metabolic pathways including glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, anaplerotic reactions, and biosynthetic pathways of fatty acids and amino acids. The validity and strength of this approach is illustrated by its application to a number of perturbations to breast cancer cells, including exposure to hypoxia, drug treatment, and tumor progression. We observed significant differences in the activities of specific metabolic pathways resulting from these perturbations and providing new mechanistic insights. Based on these findings we conclude that the developed metabolomic approach constitutes a promising analytical tool for revealing specific metabolic phenotypes in a variety of cell types and pathological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.