Abstract

Campylobacter jejuni has been reported as a major cause of bacterial food-borne enteritides in developed countries during the last decade. Despite its fastidious growth requirements, including low level of oxygen and high level of CO2, this pathogen is able to persist in the environment without permanent loss of its viability and virulence. As C. jejuni is not able to multiply outside a host, the cells spend significant amount of time in stationary phase of growth. The entry into the stationary phase is often correlated to resistance to various stresses in bacteria. The switching between exponential and stationary phases is frequently mediated by the regulator sigma S (RpoS). However, this factor is absent in C. jejuni and molecular mechanisms responsible for transition of cells to the stationary phase remain elusive. In this work, proteomic profiles of cells from exponential and stationary phases were compared using 2-D electrophoresis (2DE) fingerprinting combined with mass spectrometry analysis and qRT-PCR. The identified proteins, whose expression differed between the two phases, are mostly involved in protein biosynthesis, carbon metabolism, stress response and motility. Altered expression was observed also in the pleiotropic regulator CosR that was over-expressed during stationary phase. A shift between transcript and protein level evolution of CosR throughout the growth of C. jejuni was observed using qRT-PCR and (2DE). From these data, we hypothesized that CosR could undergo a negative autoregulation in stationary phase. A consensus sequence resulting from promoter sequence alignment of genes potentially regulated by CosR, including its own upstream region, among C. jejuni strains is proposed. To verify experimentally the potential autoregulation of CosR at the DNA level, electrophoretic mobility shift assay was performed with DNA fragments of CosR promoter region and rCosR. Different migration pattern of the promoter fragments indicates the binding capacity of CosR, suggesting its auto-regulation potential.

Highlights

  • Campylobacter jejuni is continuously reported as the main cause of bacterial food-borne infections in developed countries (EFSA and ECDC, 2015)

  • Considering the lack of information concerning the transition of C. jejuni from exponential to stationary phase, we compared the proteomic profiles of cells harvested after 7 and 18 h of microaerobic cultivation at 42◦C

  • The selected proteins participate in pathways important for the survival of C. jejuni, such as carbon metabolism (AcnB, FumC, and OorA), general and oxidative stress response (BetA, DnaK, Rbr, and TrxB), motility (FlaA, CheW) and gene expression regulation represented by the essential twocomponent regulator CosR

Read more

Summary

Introduction

Campylobacter jejuni is continuously reported as the main cause of bacterial food-borne infections in developed countries (EFSA and ECDC, 2015). The disease caused by this pathogen, namely campylobacteriosis, is triggered mainly by consumption of contaminated food or water, a direct transmission from infected animals to human hosts can occasionally occur (Bronowski et al, 2014) It manifests as an acute inflammatory diarrhea with symptoms common to other bacterial enteritides— abdominal pain, fever and watery diarrhea often accompanied with the presence of blood and leukocytes in stool (Blaser and Engberg, 2008). Campylobacteriosis is selflimiting and does not require specific therapy, severe autoimmune disorders, such as Guillain-Barré and MillerFisher syndromes (Salloway et al, 1996; Nachamkin, 2002), reactive arthritis (Pope et al, 2007), and inflammatory bowel disease (Rodriguez et al, 2006) may appear. It is necessary to identify genetic and environmental factors affecting the persistence of C. jejuni in the environment, in order to develop new methods mitigating the campylobacteriosis cases

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.