Abstract
AbstractWe employ profiling floats with dissolved oxygen sensors to observe in situ temporal oxygen evolution below the mixed layer, allowing us to characterize net respiration of organic carbon in eight distinct regions over the globe. Export and export efficiency are generally high in locations with strong seasonal variability and low in locations of weak seasonality. Vertically integrated respiration is weakly, yet significantly, correlated with remote observations of chlorophyll, net primary production, and planktonic community size structure. These correlations suggest that regimes of high net primary production and large phytoplankton fuel elevated respiration at depth. Several regions of float‐based observations intersect with sites of other detailed observations (e.g., Hawaii and Sargasso Sea), which allows us to compare our results to independent studies. We find that there is good agreement among export production estimates at highly seasonal locations, and that float‐based observations may be biased low at weakly seasonal locations. We posit that the reason for the low‐latitude discrepancy is the relative steady state of oxygen concentration caused by weak seasonality and shallow wintertime mixed layer depths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.