Abstract

Fanconi anemia (FA) is a rare genetic syndrome characterized by developmental defects, bone marrow failure, and a high cancer risk. FA is usually inherited as an autosomal recessive condition. This disease is genetically heterogeneous and mutations in 16 different genes have been identified in FA patients to date. An accurate diagnosis needs detection of pathogenic variations in the FA genes along with positive results from chromosome breakage test. In this study, 48 families with at least 2 affected FA patients and positive chromosome breakage test were enrolled from the Iranian population. Molecular analysis of FA genes was performed using Next Generation Sequencing (NGS) method and Multiple Ligation Dependent Probe Amplification (MLPA). Causal mutations for 30 (63%) patients were identified in homozygous or compound heterozygous forms. FANCA had the highest mutation frequency rate (83%) followed by FANCG (10%), FANCD2 (3%) and FANCL (3%). A significant proportion (44%) of FANCA mutations were large rearrangements. Genetic testing for FA patients improves the accuracy of diagnosis and also will be essential for genetic counselling and prenatal diagnosis for future pregnancies in the family. Availability of NGS technology has made the screening of all known FA genes at once more practical and affordable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call