Abstract

Cell motility plays an essential role in many biological processes as cells move and interact within their local microenvironments. Current methods for quantifying cell motility typically involve tracking individual cells over time, but the results are often presented as averaged values across cell populations. While informative, these ensemble approaches have limitations in assessing cellular heterogeneity and identifying generalizable patterns of single-cell behaviors, at baseline and in response to perturbations. In this study, CaMI is introduced, a computational framework designed to leverage the single-cell nature of motility data. CaMI identifies and classifies distinct spatio-temporal behaviors of individual cells, enabling robust classification of single-cell motility patterns in a large dataset (n = 74253 cells). This framework allows quantification of spatial and temporal heterogeneities, determination of single-cell motility behaviors across various biological conditions and provides a visualization scheme for direct interpretation of dynamic cell behaviors. Importantly, CaMI reveals insights that conventional cell motility analyses may overlook, showcasing its utility in uncovering robust biological insights. Together, a multivariate framework is presented to classify emergent patterns of single-cell motility, emphasizing the critical role of cellular heterogeneity in shaping cell behaviors across populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.