Abstract
Mouse somatic cells can be reprogrammed into induced pluripotent stem cells through a highly heterogeneous process regulated by numerous biological factors, including adenosine-to-inosine (A-to-I) RNA editing. In this study, we analyzed A-to-I RNA editing sites using a single-cell RNA sequencing (scRNA-seq) dataset with high-depth and full-length coverage. Our method revealed that A-to-I RNA editing frequency varied widely at the single-cell level and underwent dynamic changes. We also found that A-to-I RNA editing level was correlated with the expression of the RNA editing enzyme ADAR1. The analysis combined with gene ontology (GO) enrichment revealed that ADAR1-dependent A-to-I editing may downregulate the expression levels of Igtp, Irgm2, Mndal, Ifi202b, and Tapbp in the early stage, to inhibit the pathways of cellular response to interferon-beta and regulation of protein complex stability to promote mesenchymal-epithelial transition (MET). Notably, we identified a negative correlation between A-to-I RNA editing frequency and the expression of certain genes, such as Nras, Ube2l6, Zfp987, and Adsl.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.