Abstract

AbstractThaw depths beneath arctic streams may have significant impact on the seasonal development of hyporheic zone hydraulics. To investigate thaw progression over the 2004 summer season we acquired a series of ground‐penetrating radar (GPR) profiles at five sites from May–September, using 100, 200 and 400 MHz antennas. We selected sites with the objective of including stream reaches that span a range of geomorphologic conditions on Alaska's North Slope. Thaw depths interpreted from GPR data were constrained by both recorded subsurface temperature profiles and by pressing a metal probe through the active layer to the point of refusal. We found that low‐energy stream environments react much more slowly to seasonal solar input and maintain thaw thicknesses longer throughout the late season whereas thaw depths increase rapidly within high‐energy streams at the beginning of the season and decrease over the late season period. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.